SMC WN30 febr 70

Connected spaces in which all connected sets containing some fixed point are closed.

J.L. Hursch

A. Verbeek-Kroonenberg

Notations.

Let X be a connected T_1 -space and x_0 some fixed point of X such that any connected set containing x_0 is closed.

The characters z, y, z, u, v, ... denote points of X.

For a topological space Y, we write Y = A + B if Y is the topological sum of its subspaces A and B.

We will frequently apply the following two wellknown lemma's, most often with $Y = \{z\}$ for some $z \in \mathbb{Z}$:

Lemma 1. If Z and Y \subset Z are connected and Z \setminus Y = A + B, then Y \cup A (and Y \cup B) is connected.

Lemma 2. If Z and Y \subset Z are connected and C is a component of Z \ Y then Z \ C is connected.

Let < be the relation (partial order) defined on X by:

 $x_0 < y$ for all $y \in X \setminus \{x_0\}$ x < y if x separates x_0 and y

Then X and < have the following properties:

Proposition 1. The relation < is antisymmetric and transitive; i.e. is a partial order.

Proof. If x < y and y < x then there exist A, B, C, D C X such that $X \setminus \{x\} = A + B$, $X \setminus \{y\} = C + D$, $x_0 \in A \cap B$, $y \in B$ and $x \in D$. Now $A \cup \{x\}$ is connected (lemma 1), contained in C + D, but meeting both $C(\text{in } x_0)$ and D(in x). Contradiction.

If x < y and y < z then there exist A, B, X, D C X such that $X \setminus \{x\} = A + B$, $X \setminus \{y\} = C + D$, $x_0 \in A \cap C$, $y \in B$ and $z \in D$. Since DU $\{y\}$ is connected (lemma 1) and intersects B (in y) DU $\{y\} \in B$. Hence x < z.

Proposition 2. For each $x \in X$ {y | y < x} is linearly ordered (and wellordered by >, see 6)

Proof. Let y < x, z < x but $y \nleq z$ and $z \nleq y$. Then there exist A, B, C, D $\subset X$ such that $X \setminus \{y\} = A + B$, $X \setminus \{z\} = C + D$, $x_0 \in A \cap C$ and $x \in B \cap D$, but $z \notin B$, $y \notin D$ and so $z \in A$ and $y \in C$. Since $D \cup \{z\}$ is connected (lemma 1), and intersects A (in z), but does not contain y, $D \cup \{z\} \subset A$. This is contradictory to $x \in D \setminus A$.

Proposition 3. If $x \in X$ and C is a component of $X \setminus \{x\}$ which does not contain x_0 , then C is open in X, and $C^- = C \cup \{x\}$. (If $x_0 \in C$, then C is closed in X).

Proof. X\C is connected (lemma 2), contains x_0 and is hence closed. Now C cannot be closed in X, because X is connected. As C is closed in X\{x}, only x can be another limitpoint of C.

Proposition 4. For any $x \in \{y \mid x \nmid y\}$ is the component of $X \setminus \{x\}$ which contains x_0 , and hence this set is closed. So its complement $\{y \mid x \leq y\}$ is connected and open.

Proof. By definition of $\langle \{y \mid x \nmid y\} \}$ is the quasicomponent of x_0 in $X \setminus \{x\}$. If this set was not connected, then it would contain a component C of $X \setminus \{x\}$ which does not contain x_0 . But this C is open in X (by 3) and closed in $X \setminus \{x\}$. Thus $\{y \mid x \nmid y\}$ is not a quasicomponent.

The connectedness of $\{y \mid x \leq y\}$ follows from lemma 2.

- Proposition 5a. For each non empty linearly ordered $A \subset X$ there is a (unique) $x \in X$ such that $x = \inf A$.
 - 5b. Each $y \in X \setminus \{x_0\}$ has an immediate predecessor, which will be denoted by y'. For this point y':

$${z \mid y \leq z}^{-} = {z \mid y \leq z} \cup {y'}$$

Proof. (a) Let $A^* = \{z \mid \exists a \in A \mid a < z\}$. By 4 this set is open and hence not closed, as X is connected. Let x be a boundary point of A^* . At first we will show that x < a for all $a \in A$ (or $a \in A^*$). Since $x \notin A^*$ we have $a \nmid x$ for all $a \in A$. Suppose x and some $a \in A$ are not comparible. Then, by 2, x cannot be compared with any $a \in A$. But then again by 2, $\{y \mid x \leq y\} \cap A^* = \emptyset$. Since $\{y \mid x \leq y\}$ is open (see 4), $x \notin A^*$.

Contradiction.

Secondly assume that for some y = x < y and y < a for all $a \in A$. For $a \in A$ let C_a be the component of a in $X \setminus \{y\}$. Since, by $\{y\}$, $\{z \mid a \le z\} \subset C_a$, the family $\{C_a \mid a \in A\}$ has no disjoint members. Hence it has a connected union. This means that for some component C of $X \setminus \{y\}$ $A \subset C$. By $A \subset C$ $By A \subset C$ $By A \subset C$ $By A \subset C$.

So if A has no smallest element then $x = \inf A$.

(b) Let $A = \{y\}$, y' = x =the boundary point of $\{z \mid x \le z\}$.

For each ordertype α , ordered by <, let α^* denote the ordertype of α , ordered by >. It follows immediately from 5a and 5b that for each $x \in X$ the set $\{y \mid y \leq x\}$ has ordertype α^* for some ordinal α . If A is a linearly ordered subset of X, and B is an infinite strictly increasing sequence, then by consequence B is cofinal with A. It follows from 4 and 5b that X cannot have maximal members.

Thus we proved:

Proposition 6. Let A be a linearly ordered subset of X, with ordertype α . If A is bounded in X then $\alpha = \beta^*$ for some ordinal β . If A is not bounded in X then $\alpha = \sum_{n \in \mathbb{N}} \beta_n^*$, for some suitable countable set of ordinals $\{\beta_1, \beta_2, \ldots\}$.

We feel that the following facts deserve special attention

- 7. Any point of $X \setminus \{x_0\}$ separates X in infinitely many components (as follows from 4).
- 8. Any connected space has a non-closed connected (proper) subset (else it were a space like X, but $X \setminus \{x_0\}$ is non-closed and connected).
- 9. ZARANKIEWICZ 2 . If M is a connected separable metric space and D is the set of points $x \in M$ for which $M \setminus \{x\}$ has at least 3 components, then D is countable. On the other hand M has continuously many points.

Corollary. X is not separable metric.

Example of a Hausdorffspace X.

Let N be the set of natural numbers, and P c N the set of primenumbers.

Put
$$X = \bigcup \{ \mathbb{N}^n \mid n \in \mathbb{N} \} \cup \{0\}.$$

For
$$x \in X$$
 we define length $x = \begin{cases} 2 & \text{if } x = 0 \\ n+2 & \text{if } x \in \mathbb{N}^n \end{cases}$.

We define a partial order on X by taking $0 \le x$ for all $x \in X$ and $x \le y$ if x is an initial sequent of y, i.e. if $x \in \mathbb{N}^n$, $y \in \mathbb{N}^m$, $n \leq m$, and there exist $a_1, \ldots a_m \in \mathbb{N}$ such that $x = (a_1, \ldots a_n), y = (a_1, \ldots a_m)$. If $x = (a_1, ...a_n)$ then let $x' = (a_1, ...a_{n-1})$.

As a subbase for the open sets we take all sets

(i)
$$\{z \mid x < z\}$$
 for each $x \in X$

(ii)
$$\{z \mid x \nmid z \land z \neq x'\}$$
 for each $x \in X$

 $\{z \mid \text{the only primes deviding length y are } p_1, \dots, p_n\}$ (iii) for each finite set of primes, p1,...pn.

10. X is a Hausdorffspace

Let u, v & X. We distinguish between

- (a) u < v and even $u < v^{\dagger}$
- (b) neither u < v nor v < u
- (c) $u = v^{\dagger}$.

- (a) In this case $\{y \mid v \not \leq y \land y \neq v'\}$ and $\{z \mid v \leq z\}$ are disjoint neighbourhoods of u and v.
- (b) Now $\{z \mid u \leq z \text{ and } \{z \mid v \leq z\}$ are disjoint neighbourhoods of u and v, since u < z and v < z (for some $z \in X$) would imply that u and v are comparable (by definition of X).
- (c) Let $p_1, \dots p_n$ be the set of prime numbers which devide length u, and $q_1, \dots q_m$ idem for length v. Then $\{p_1, \dots p_n\}$ $\cap \{q_1, \dots q_m\} = \emptyset$ and so $\{z \mid \forall p \in P \mid p \mid \text{length } z \Rightarrow p \in \{p_1, \dots p_n\}\}$ and $\{z \mid \forall p \in P \mid p \mid \text{length } z \Rightarrow p \in \{q_1, \dots q_m\}\}$ are disjoint neighbourhoods of u and v.

11. Any connected set C C X containing 0 is closed.

If $u \in X \setminus C$ then we will show that C is disjoint from $\{y \mid u \leq y\}$; hence C is closed. Suppose $u \leq y$ for some $y \in U$, and $u \in \mathbb{N}^n$, $y = (a_1, \dots a_m) \in \mathbb{T}^m$. Now $C = (C \cap \{z \mid (a_1, \dots a_{n+1}) \leq z\}) + (C \cap \{z \mid (a_1, \dots a_{n+1}) \neq z \land z \neq u\}$, contradictory to the connectedness of $C \cdot \blacksquare$

12. X is connected.

Lemma. For each $u \not\in X \setminus \{0\}$ the points u and u' have no disjoint closed neighbourhoods.

Proof of the connectedness of X.

Suppose X = A + B, $0 \in A$, $y \in B$ is such that length y is minimal. Then $y' \in A$, and A and B are disjoint closed neighbourhoods of y' and y. Contradiction.

Proof of the lemma. Let $u = (a_1, \dots a_1)$.

For each point $x \in X$ and each finite family $\{x_1, \dots x_n\}$ such that $x_i \not x$ and $x' \not = x_i!$ we define the following neighbourhood of x: $U(x,\{x_1,\dots x_n\}) = \{z \mid x \le z\} \cap \{z \mid \forall p \in P \ (p \mid length \ z) \Rightarrow (p \mid length \ x)\} \cap \bigcap_{i=1}^n \{z \mid x_i \not x \land z \not = x_i!\}.$

It should be clear that if the x_1 , ... x_n vary we obtain a neighbourhoodbase of x. (We may also vary only over those x_i for which $x < x_i$).

For $x = (a_1, \dots a_n)$ we let $\max x = \max\{a_1, \dots a_n\}$. Now let $U(u', \{x_1, \dots x_n\})$ and $U(u, \{x_{n+1}, \dots x_m\})$ be two arbitrary basic neighbourhood of u' and u.

Put

N = max{max x, | i=1, ...k} + 1
L = (length x)(length x') - 2
v = (a₁, ...a₁, N, N, ...N)
$$\in$$
 N^L.

We will show that $v \in U(u', \{x_1, \dots x_n\})^- \cap U(u, \{x_{n+1}, \dots x_m\})^-$. Let $U(v, \{x_{m+1}, \dots\})$ be an arbitrary neighbourhood of v. Put

$$N' = \max\{\max x_i \mid i=1, ...k, ...m, m+1, ...\} + 1.$$

Let p, $q \in P$ be such that p|length u', q|length u, and choose $r \in N$ such that $p^r > L$ and $q^r > L$. Then

$$(\underbrace{a_1, \dots a_1, N, \dots N, N', \dots N'}_{\text{L numbers}}) \in U(u', \{x_1, \dots x_n\}) \cap U(v, \{x_{m+1}, \dots\})$$

It is easily seen that if $C \subset X$ is connected, then each $x \in C$ disconnects C, except inf C (cf 11 and 4 and 5). In the terminology of [1]: each connected subset of X has at most one endpoint. The points (1), (2), (3) are such that none of them separates the other 2. Zo this settles the problem mentioned in [1] p 24 remark 3.

REFERENCES

[1] H. Kok

On conditions equivalent to the orderability of a connected space. Wiskundig Seminarium der Vrije Universiteit Rapport 6 November 1969.

[2] C. Zarankiewicz and K. Kuratowski

Bull. Amer. Math. Soc. 33(1927) 571.